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H I G H L I G H T S

• The calculation process and algorithm of
response surface model (RSM) were enhanced.

•The prediction errors of RSM in the margin and
transition areas were greatly reduced.

•The enhanced RSMwas able to analyze O3-NOx-
VOC sensitivity in real-time.

•The O3 formations were mainly sensitive to
VOC, for the two case study regions.
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G R A P H I C A B S T R A C T

A B S T R A C T

Quantification of the nonlinearities between ambient ozone (O3) and the emissions of nitrogen oxides
(NOx) and volatile organic compound (VOC) is a prerequisite for an effective O3 control strategy. An
Enhanced polynomial functions Response Surface Model (Epf-RSM) with the capability to analyze
O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method
into the optimized Extended Response Surface Model (ERSM) system. The Epf-RSM could single out
the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to
precursor emission changes. Several comparisons between Epf-RSM and pf-ERSM (polynomial
functions based ERSM) were performed using out-of-sample validation, together with comparisons of
the spatial distribution and the Empirical Kinetic Modeling Approach diagrams. The comparison
results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to over-
fitting in the margin areas and high biases in the transition areas. The O3 concentrations predicted by
Epf-RSM agreed well with Community Multi-scale Air Quality simulation results. The case study
results in the Pearl River Delta and the north-western area of the Shandong province indicated that the
O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in
January, April, and October, while more NOx-sensitive in July.
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1 Introduction

Ambient tropospheric ozone (O3) has adverse effects on
human health (Seltzer et al., 2018) and terrestrial
vegetation (Yue et al., 2017). Recently, the treatment of
soaring ground-level O3 pollution has been receiving
substantial attention in China after the concentration of
PM2.5 was effectively reduced (Sun et al., 2019). O3 is a
secondary pollutant that is formed in the troposphere by
the reaction between nitrogen oxides (NOx) and volatile
organic compound (VOC) in the presence of sunlight. The
complexity of the O3 formation mechanism is shown
through the sensitivity variations of O3-NOx-VOC in
different spatial and temporal scales (Wang et al., 2017).
Precisely identifying the photochemical regime of O3

formation (i.e., NOx-sensitive and VOC-sensitive) will
help to determine which emissions should be focused on to
efficiently abate O3 pollution in a target region (Liao et al.,
2007; Ye et al., 2016; Wang et al., 2019).
The isopleths of the O3 concentrations versus NOx and

VOC emissions, known as the Empirical Kinetic Modeling
Approach (EKMA) diagrams, are widely used to illustrate
the O3-NOx-VOC sensitivity (Zhong et al., 2014; Sharma
et al., 2016). Generally, the EKMA diagrams are obtained
by interpolating dozens or hundreds of control scenarios
with different combinations of precursor emission
changes, which are simulated with observation-based
models (OBMs) or emission-based models (EMBs) (Su
et al., 2018; Chen et al., 2019; Zhang et al., 2020). OBMs
are used to calculate the ozone production rate and relative
incremental reactivity of precursors to generate O3

isopleths plots (Tan et al., 2018a; Tan et al., 2018b). The
OBM-based EKMA diagrams can identify the photoche-
mical regime of O3 formation, but they are inconvenient
for determining the precursor reductions required to
achieve a specific O3 concentration (Cardelino and
Chameides, 1995; 2000). Contrastingly, the EBM-based
EKMA diagrams, which are drawn based on EBM-
simulated nonlinear responses of O3 concentration to
precursor emission changes, allow qualitative and quanti-
tative analysis of O3 sensitivity (Ou et al., 2016; Collet et
al., 2018). Nevertheless, the heavy computing burden
involved in simulating control scenarios with EBMs
presents a great challenge to provide real-time sensitivity
analysis for O3. The Response Surface Model (RSM) is a
promising model to address this challenge. The RSM has
been developed using statistical regression structures to
approximate EBM functions (Xing et al., 2011). The
development of RSM methodologies has allowed for the
continuous improvement of the efficiency of the prediction
systems owing to the reduced number of scenarios required
to generate the RSM (see Table S1). Furthermore, the
methodology of O3 sensitivity analysis in the RSM has
also been kept updated. The conventional RSM can
efficiently provide a real-time response of O3 concentration

to precursor emission perturbations. However, the complex
statistical technique involved in the conventional RSM
creates difficulty in the investigation of the nonlinearity of
the predicted system (Xing et al., 2018). Therefore, Xing et
al. (2018) developed a series of polynomial functions to
represent the response of O3 concentrations to precursor
emissions. The polynomial function based RSM (pf-RSM)
can directly calculate the peak ratio (PR) to quickly
identify the O3 formation regime in the baseline condition.
Furthermore, through combining multiple single-region pf-
RSM systems and a total-region pf-RSM system mathe-
matically, a polynomial function based Extended Response
Surface Model (pf-ERSM) can be developed from the pf-
RSM (Fang et al., 2020). The pf-ERSM exhibits good
performance in quantifying the nonlinear relationship
between O3 concentrations and precursor emissions in
multiple regions but there still exist two drawbacks: 1)
over-fitting in the margin areas (Xing et al., 2011) where
emissions are cut down more than 60%; and 2) existing
relatively high biases in the transition areas which are the
significant change areas for the change ratios of pollutant
concentration between adjacent regions. These factors
affect more or less the results of the sensitivity analysis for
O3 using the pf-ERSM.
Aiming to address the above two drawbacks, we

enhanced the pf-ERSM by innovatively integrating the
hill-climbing algorithm with it and optimizing the calcula-
tion process of ERSM. The enhanced pf-ERSM was
referred to as Enhanced polynomial functions Response
Surface Model (Epf-RSM) in the remainder of this paper.
Two pilot case studies in China, one in the Pearl River
Delta (PRD) and the other in the north-western area of the
Shandong province (NWShD), were conducted to compare
the performance of Epf-RSM and pf-ERSM for catching
the nonlinearity of O3 response to precursor emissions in
real-time.

2 Materials and methods

The operation process for developing and applying Epf-
RSM for O3 (Epf-RSM_O3) was shown in Fig. 1. First, the
multi-dimensional experiment design for the control
matrix was developed, with the control factors selected
based on the emission control strategy targets (i.e.,
precursors/species, regions). Second, the Weather
Research and Forecasting (WRF, version 3.9.1) model
was used to simulate the meteorological condition in the
base year, to drive simulations with the Community Multi-
scale Air Quality (CMAQ, version 5.2) under various
simulation scenarios from the control matrix. Third, the
best suited polynomial functions were fitted based on the
CMAQ simulation results, where a hill-climbing adaptive
method was used. Thereafter, the best suited polynomial
functions predicted the nonlinear response of O3 concen-
tration to multi-region precursor emission changes in the
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optimized ERSM system. Finally, after the robustness of
the developed Epf-RSM_O3 was validated, the system was
ready to perform a series of real-time analyses.

2.1 WRF-CMAQ modeling domain and configuration

The WRF-CMAQ was performed using three nested
modeling domains with grid resolutions of 27 km (outer-
most domain, d01), 9 km (middle domain, d02), and 3 km
(innermost domain, d03). The d01 domain that covered
approximately 4725 km � 3348 km on a Lambert
conformal projection was centered at 31.1°N, 112.3°E
for the PRD case study. The d02 domain that covered
approximately 1197 km � 1197 km was centered at
22.8°N, 117.8°E, while the d03 that covered the entire
PRD region (336 km � 444 km) with 112 � 148 grid cells
was centered at 21.1°N, 117.0°E. The d03 was divided into
seven regions, including Shunde (SD), Foshan excluding
Shunde (FS), Guangzhou (GZ), Zhongshan (ZS), Jiang-
men (JM), Dongguan & Shenzhen (DG&SZ), and all other
regions in the PRD (OTH). The north-western area of the
Shandong province (NWShD) case study was covered by a
d01 domain of approximately 1701 km � 1970 km
centered at 34.3°N, 115.4°E. The d02 domain that covered
approximately 819 km � 819 km was centered at 36.9°N,
121.4°E, while the d03 that covered the NWShD (363 km

� 327 km) with 121 � 109 grid cells was centered at
36.5°N, 119.9°E. The NWShD was also divided into seven
regions, including Jinan (JN), Dezhou (DZ), Binzhou
(BZ), Liaocheng (LC), Taian (TA), Zibo (ZB), and all other
regions in the NWShD (OTH). Additionally, the average of
data values from the national-controlled air-monitoring
sites in the cities or the regions was chosen to represent the
air quality of the individual city or region when conducting
sensitivity analysis. The spatial distribution of air-monitor-
ing sites was shown in Fig. S1.
The WRF model provided the meteorological input data

files for CMAQ. The initial and boundary conditions for
d01 were based on default profiles in CMAQ, and those for
d02 and d03 were extracted from simulation results on the
d01 and d02, respectively. The simulation periods were
January, April, July, and October, which represented
winter, spring, summer, and autumn respectively. These
simulation periods were recorded in 2015 for the PRD and
2017 for the NWShD, respectively. The Tsinghua
University provided the emission inventories for d01 and
d02 for two case studies (Ma et al., 2017; Ding et al.,
2019). Additionally, the emission inventory of the PRD
(d03) was established by the collaborative research team
from Tsinghua University and the South China University
of Technology, and the emission inventory of the NWShD
(d03) was developed by the Jinan Ecological Environment

Fig. 1 Key operation process for the development and application of an Enhanced polynomial functions Response Surface Model (Epf-
RSM) (Note: HSS: the Hammersley quasi-random Sequence Sample; WRF-CMAQ: the Weather Research and Forecasting coupled with
Community Multi-scale Air Quality).
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Bureau. The performance of WRF-CMAQ modeling
system was evaluated as shown in Text S1.

2.2 Hill-climbing adaptive method

The nonlinearity between O3 concentrations and its
precursor emissions is mainly caused by the nonlinear
behavior of pollutants in the atmospheric processes (Xue
et al., 2014; Pu et al., 2017). Heyes et al. (1996) used a
general formula to develop a fitting-based model for
simplifying the nonlinearity, and they found that a
simplified formula could easily be applied to optimize
control strategies (Heyes et al., 1997). In the pf-RSM, Xing
et al. (2018) adopted a series of fifth-order polynomial
functions (Eq. (1)) to characterize the O3 responsiveness to
precursor emissions.

ΔConc ¼
Xn

i¼1
Xi⋅ðENOX

Þai⋅ðESO2
Þbi⋅ðENH3

Þci⋅ðEAVOCÞdi
(1)

Where:ΔConc is the response of O3 concentration at either
an individual grid or aggregated grids in the target region;
ENOX

, ESO2
, ENH3

, and EAVOC represent the ratios of NOx,
SO2, NH3, and anthropogenic VOC (AVOC) emission
changes, respectively; n is the number of terms in the
function; Xi is the coefficient of the ith term; and ai, bi, ci,
and di are the exponents of ENOX

, ESO2
, ENH3

, and ENH3
in

the ith term, respectively.
However, it was found that not every receptor (single

grid cell or region) was suitable to use the high-order (e.g.,
fifth-order) functions to capture the nonlinear chemistry.
For instance, the absolute value of the coefficient of
(ENOX

)5 (2.30) was much smaller than that of (ENOX
)4

(38.89) in the polynomial function of Tianjin in July (see
Table S4 in Xing et al. (2018)). Due to the ENOX

variation
was usually in the range of [-1, 1] (i.e., from 100% cut
down and 100% increase) in the experimental designs
(Xing et al., 2011; Xing et al., 2017; Xing et al., 2018), the
effect of (ENOX

)5 was so little as to be ignored. For a
receptor like Tianjin, the use of a fifth-order polynomial
function would result in a waste of computing resources.
Moreover, using the high-order functions was more likely
to cause the Runge phenomenon (Lin and Sun, 2015),
which could result in an excessive distortion of the
response surface, especially in the margin areas where
emissions were cut down more than 60% (Fig. S4).
Therefore, it was highly recommended that each receptor
used the suitable polynomial function.
A hill-climbing adaptive method (HCAM) was devel-

oped that dynamically matched the nonlinearity in
different receptors to find the best suited polynomial
function for each receptor. Basically, the hill-climbing
method is an iterative algorithm and is generally faster than
the stochastic optimization (Guindon and Gascuel, 2003).
This method usually begins with an arbitrary solution to

the problem, then attempts to improve the solution by
making an incremental change to the solution (Lozano
et al., 2004). This study initialized the HCAM using a
default polynomial function and proceeded to find a
relatively better polynomial function by iteration. The
maximum exponents of the four variables (i.e., ENOX

, ESO2
,

ENH3
, and EAVOC) were 5, 1, 1, and 3, respectively, which

were chosen by exponent examination in our previous
study (Xing et al., 2018). All the possible polynomial
functions were listed in Table S4.
Three indicators were used as the termination criterion

for judging whether a polynomial function was the suitable
one. First, the relative R2 surplus ratio (∂R2, Eq. (2)) was
developed to measure the surplus improvement potential
for the fitting accuracy. Then, the change of Mean Bias
(ΔMeanB, Eq. (3)) and change of Max Bias (ΔMaxB, Eq.
(4)) were introduced to avoid the response surface from
becoming excessively distorted. The thresholds of the
three indicators, namely, the threshold of ∂R2 (TRS), the
threshold of mean bias (TMean), and the threshold of max
bias (TMax), were determined as shown in Section 3.1.
The iterative process is terminated when any of the
following termination signals is received: (1) ∂R2 is less
than TRS, and ΔMeanB and ΔMaxB are larger than the
corresponding thresholds; and (2) ∂R2 is less than 0 or
either ΔMeanB or ΔMaxB is greater than 0. When signal
(1) occurs, it would be impossible to improve the fitting
precision effectively; when signal (2) occurs, a continued
increase in the exponents of the variables will create
greater errors.

δR2
j ¼

ΔR2
j

1 –R2
j

¼ R2
jþ1 –R

2
j

1 –R2
j

(2)

ΔMeanBj ¼ MeanBjþ1 –MeanBj (3)

ΔMaxBj ¼ MaxBjþ1 –MaxBj (4)

Where:
j is the jth fitting polynomial function; and R2, MeanB, and
MaxB are described in Text S2.
The schematic diagram of HCAM was shown in Fig. 2,

and the specific steps of HCAM were listed below:
Step 1: modeling the response of a receptor with the

default polynomial function;
Step 2: determining whether the polynomial function

met the termination criterion. If yes, outputting the result as
a suitable polynomial function. Otherwise, using the
current polynomial function for the next step by replacing
the previous one;
Step 3: adding 1 to the exponent of each variable that did

not reach the maximum exponent in the current polynomial
function, thereby constructing a new set of polynomial
functions;
Step 4: comparing the R2 of these new polynomial
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functions to choose the one with the largest R2, then
returning to Step 2.

2.3 Optimization of ERSM calculation process

In the previous ERSM system (Xing et al., 2017), the
multi-region contributions were divided into three compo-
nents: (1) the impact of O3 formed in the receptor by
transported precursors from the source region (the
contribution form CM); (2) the impact of direct regional
transport of O3 from the source region (the contribution
form TP); and (3) inter-region contributions (IR) among
multiple regions. Moreover, the IR was further subdivided
into CM_IR (the inter-region contribution form CM) and
TP_IR (the inter-region contribution form TP). The total
contribution to O3 concentration at the receptor grid t
(ΔConct) was represented by Eq. S4 in Text S3, and the
formulae for the four components were represented
respectively by Eqs. S5‒S8 in Text S3.
As shown in Eq. S5, the change ratios of precursor

concentrations in the receptor associated with the emis-
sions changes in the source region (denoted as “E#prec”)
were calculated to estimate the contribution form CM. The
E#prec across grid cells (denoted as “E#prec,t”) showed a
spatial difference (Fig. S5). However, the spatial difference
was neglected because the E#prec was calculated as the
average of the aggregated grids in the target region
(denoted as “E#prec,T”). Therefore, using E#prec,T led to the
final pf-ERSM-predicted ΔConct deviating from the
CMAQ-simulated ΔConct, especially in the significant
change areas for E#prec,t (i.e., transition areas). To resolve
this limitation, the contributions form CM and TP were
integrated into the single-region contribution (denoted as
“SR”) to avoid the use of E#prec,T . Correspondingly, the
CM_IR and TP_IR were integrated into IR. The new
formula for ΔConct was provided in Eq. (5):

ΔConct ¼
XN

S¼1
SRS↕ ↓t þ IRt (5)

Where:
ΔConc is the change of O3 concentration in the receptor

grid t of region T; N is the number of regions; SRS↕ ↓t is the
contribution from CM and TP to ΔConc associated with
the emission changes in source region S; and IRt is the
inter-region contributions to ΔConc.
The O3 concentrations in the receptor were affected by

the emissions in the source region through two pathways,
namely, CM and TP. Therefore, the single-region con-
tribution from a source region was the sum of the
contributions from CM and TP (see Eq. S6), and the
formula of SR was expressed as follows:

SRS↕ ↓t ¼ RSM_O3S↕ ↓t
ðEprec,SÞ (6)

Where:
Eprec,S is the change ratios of four precursors in source
region S; and RSM_O3S↕ ↓t

ðEprec,SÞ is the single-region
RSM system that models the ΔConc at receptor grid t to
Eprec,S .
A total-region RSM (denoted as “RSMTT”) in which

emissions in all regions changed simultaneously was used
to explicitly represent the inter-region contributions (IR).
The IR was calculated as the difference between the
predictions in RSMTT and the sum of SR, as shown below:

IRt ¼ RSMtt_O3S↕ ↓t
ðEprecÞ –

XN

S¼1
SRS↕ ↓t (7)

Where:
Eprec is the average of [Eprec,1, …, Eprec,T – 1, Eprec,Tþ1,…,
Eprec,N ]; and RSMtt_O3S↕ ↓t

ðEprecÞ is the RSMTT system that
estimates the response of O3 concentration at the receptor
grid t to Eprec.

2.4 Configuration of Response Surface Modeling systems

The experiment designs for generating Epf-RSM and pf-
ERSM were similar to those described in our recent paper
(Fang et al., 2020), which were summarized in Table 1.
The O3 response in each receptor to precursor emission
changes in individual source region or in all regions (i.e.,
RSM/RSMTT) was established by 42 training samples,
which include one baseline scenario, one zero-out
scenario, and 40 control scenarios. The 40 control

Fig. 2 The schematic diagrams of the hill-climbing adaptive method (HCAM) (Note: F(a, b, c, d) represents a polynomial function; a, b,
c, and d represent the nonnegative integer exponents of ENOX

, ESO2
, ENH3

, and EAVOC, respectively; the red and blue lines represent either
adding 1 to a or d, respectively).
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scenarios were randomly sampled by Hamersley quasi-
random Sequence Sampling (HSS) (Hammersley, 1960)
with a range of 0 to 1.5 (i.e., from 100% cut down and 50%
increase) in the PRD, while with a range of 0 to 2 (i.e.,
from 100% cut down and 100% increase) in the NWShD,
for further testing the applicability of the two ERSM
systems over the different range of emission rates.
Furthermore, two data sets were selected as out-of-sample
scenarios to validate the prediction performance of the two
ERSM systems. These included 10 samples for the PRD
region (denoted as “OOS_PRD”) and 15 samples for the
NWShD region (denoted as “OOS_NWShD”). The two
out-of-sample data sets were also sampled randomly by
HSS.

3 Results and discussion

3.1 Termination criterion for the best suited polynomial
functions

The grid cells containing the monitoring site were chosen

to represent the air quality of the target regions, for
investigating the optimal thresholds with three indicators
(i.e., ∂R2, ΔMeanB, and ΔMaxB). First, the HCAM was
used to select the best suited polynomial function for each
grid cell with artificially judging whether the iterative
process should be terminated. Thereafter, the three
indicators of these best suited polynomial functions were
analyzed statistically. A strong correlation between R2 and
∂R2 of the best suited polynomial functions was shown in
Fig. S6. Based on the Slogistic3 model in Origin 2017, a
function of TRS (FTRS) was designed to represent the
correlation, as follows:

FTRSðR2Þ ¼ a1þ a2

1þ a3⋅expð – a4⋅R2Þ (8)

This was followed by determining the four FTRS
coefficients (i.e., a1, a2, a3, and a4), TMean, and TMax
by controlling variables. The indicator thresholds of
termination criterion for SR (denoted as “TCSR”) were
determined, as shown in Fig. S7. TCSR was expressed as
follows:

TCSR ¼
δR2

j < 0:09þ 0:645

1þ 2:9� 1073 � expð – 168:6� R2
j Þ

ΔMeanBj > – 0:0004

ΔMaxBj > – 0:001

or δR2
j < 0 or ΔMeanBj > 0 or ΔMaxBj> 0

8>>>>><
>>>>>:

(9)

The indicator thresholds of termination criterion for IR (denoted as “TCIR”) were determined, as shown in Fig. S8. TCIR

was expressed as follows:

Table 1 Scenarios for Response Surface Modeling design

Short name Objective Control factor Number of cases

Baseline Baseline case – 1

RSM RSM method, to create
single regional RSM in
seven regions separately

Four precursors including
NOx, SO2, NH3, AVOC in
each of the seven regions

For the PRD: 41 samples for each region in addition to the baseline case
(total 288, 41 � 7+ 1 = 288), Hamersley quasi-random Sequence Sampling
between 0.0 to 1.5 a, the control matrix is shown in Table S5
For the NWShD: 41 samples for each region in addition to the baseline case
(total 288, 41 � 7+ 1 = 288), Hamersley quasi-random Sequence Sampling
between 0.0 to 2.0 a, the control matrix is shown in Table S6

RSMTT Using RSM method, to
create multiple regional
RSM in seven regions

Four precursors including
NOx, SO2, NH3, AVOC in
each of the seven regions

For the PRD: 41 samples for seven regions together in addition to the
baseline case (total 42), Hamersley quasi-random Sequence Sampling
between 0.0 to 1.5 a, the control matrix is shown in Table S5
For NWShD: 41 samples for seven regions together in addition to the
baseline case (total 42), Hamersley quasi-random Sequence Sampling
between 0.0 to 2.0 a, the control matrix is shown in Table S6

OOS Out-of-sample validation Four precursors including
NOx, SO2, NH3, AVOC in
each of the seven regions

For the PRD: 10 samples for seven regions together, Hamersley quasi-
random Sequence Sampling between 0.0 to 1.5 a, the control matrix is shown
in Table S7
For the NWShD: 15 samples for seven regions together, Hamersley quasi-
random Sequence Sampling between 0.0 to 2.0 a, the control matrix is shown
in Table S8

Note: a the baseline = 1.
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TCSR ¼
δR2

j < 0:09þ 0:645

1þ 2:9� 1073 � expð – 168:6� R2
j Þ

ΔMeanBj > – 0:00076

ΔMaxBj > – 0:003

or δR2
j < 0 or ΔMeanBj > 0 or ΔMaxBj> 0

8>>>>><
>>>>>:

(10)

Finally, the HCAM with termination criterion was
applied to select the best suited polynomial functions for
each grid cell in the two case study domains. Fig. S9
depicted the spatial distribution of the ENOX

and EAVOC

exponents in the best suited polynomial functions. These
distributions showed that the ENOX

and EAVOC exponents
in most grid cells were lower than those in previous
polynomial functions, especially for July. The runtime of
Epf-RSM was approximately 29.8%–51.7% lesser than
that of pf-ERSM (Table S9), since the dimensions of the
polynomial functions were lowered and the redundant
computation process of pf-ERSM was optimized.

3.2 Performance comparison between Epf-RSM and pf-
ERSM

3.2.1 Out-of-sample comparison

The out-of-sample comparison was used to compare the
CMAQ-simulated and the Epf-RSM- or pf-ERSM-pre-
dicted O3 concentrations for out-of-sample scenarios by
the density scatterplots (Fig. 3). These included the density
of points that were represented by the data point percent
(defined in Text S4) and the best-fit lines (dashed lines)
which were described by slope and intercept. Additionally,
three statistical indexes were used to evaluate the
prediction performance of the two ERSM systems (Fig.
3), namely, Correlation coefficient (R), mean normalized
error (MeanNE), and the 95th maximal normalized error
(95th MaxNE) (defined in Table S2).
As shown in Fig. 3, the point clustering in the Epf-RSM

plots was denser near the one-to-one lines (red lines) than
this in the pf-ERSM plots, suggesting that Epf-RSM had
better prediction performance than pf-ERSM. Further-
more, the statistical indexes also demonstrated that Epf-
RSM improved the prediction performance for O3

concentrations, particularly for reducing 95th MaxNE.
When comparing the pf-ERSM to Epf-RSM for all of the
out-of-sample scenarios, the MeanNE and 95th MaxNE
decreased, and R increased from 2.8, 10.2%, and 0.9914 to
0.6, 2.3%, and 0.9993, respectively.

3.2.2 Comparison of response spatial distribution

The prediction performance of the two ERSM-systems at
different locations and times was compared using two out-
of-sample scenarios that were selected from each pilot case
study to represent two kinds of emission levels, namely,

moderate and strict. The scenarios 5 and 3 were selected
from OOS_PRD to represent the moderate and strict
control scenarios of the PRD, respectively; the scenarios 8
and 3 were selected from OOS_NWShD to represent the
moderate and strict control scenarios of the NWShD,
respectively.
Figure 4 depicted the spatial distribution of CMAQ-

simulated, Epf-RSM-predicted, and pf-ERSM-predicted
responses for O3, along with the errors of the two ERSMs
(i.e., CMAQ-simulated responses minus ERSM-predicted
responses) under two control scenarios for the PRD. Figure
5 showed similar results for the NWShD. In the two
moderate control scenarios (Figs. 4(a) and 5(a)), the
responses predicted when using Epf-RSM produced
approximately the same results as the CMAQ simulation
results; in contrast, those that were predicted using pf-
ERSM deviated from those that were simulated using
CMAQ in a few locations. Compared to moderate control
scenarios, the errors of the Epf-RSM- and the pf-ERSM-
predicted responses (denoted as “errorsepf” and “errorspf,”
respectively) were higher under the strict control scenarios
(see Figs. 4(b) and 5(b)). This was caused by the relatively
poor prediction performance at the margin areas (Xing et
al., 2011; Xing et al., 2018). Since the use of high-order
polynomial functions at the margin areas was more likely
to cause the Runge phenomenon, errorspf were prevalent in
d03 domains. Epf-RSM introduced the HCAM to avoid
the excessive distortion of the response surface, which
improved the prediction performance at the margin areas.
This resulted in errorsepf being significantly less than
errorspf under these strict control scenarios.
As shown in Figs. 4, 5, S10 and S11, the boundaries of

some regions could be observed in the spatial distribution
of errorspf. It was because the transition areas that had
relatively high errorspf were usually distributed on the
border between adjacent regions. The precursor concentra-
tions over the regional borders were mainly affected by the
different emission changes in adjacent regions. This
resulted in the difference of E#prec, t between regional
borders and centers. Moreover, the spatial difference of
E#prec, t was increasing with the gaps in control levels
between adjacent regions growing, thus increasing errorspf
in the transition areas. For example, since the NWShD had
a wider range of emission changes, its gaps in randomly
sampled control levels between adjacent regions were
larger than those in the PRD, leading to greater errorspf in
the NWShD. Epf-RSM as opposed to pf-ERSM, could
reproduce the spatial variation of the nonlinear response
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Fig. 3 Comparison of O3 concentrations simulated by CMAQ with (a) Epf-RSM-predicted in the PRD, (b) pf-ERSM-predicted in the
PRD, (c) Epf-RSM-predicted in the NWShD, (d) pf-ERSM-predicted in the NWShD, respectively (monthly averaged daily 1 h maxima
O3; unit: mg/m

3) (Note: the percent of data point represents the density of points falling at each grid cell on the plot with a resolution of 1
mg/m3 � 1 mg/m3. The red lines are the one-to-one lines indicating perfect agreement, and the dashed lines are the best-fit lines described
by slope and intercept).
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Fig. 4 Spatial distribution of CMAQ-simulated, Epf-RSM-predicted, and pf-ERSM-predicted O3 responses, along with corresponding
errors under (a) moderate control and (b) strict control scenarios of the PRD (monthly averaged daily 1 h maxima O3 in 2015, unit: mg/m

3).
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Fig. 5 Spatial distribution of CMAQ-simulated, Epf-RSM-predicted, and pf-ERSM-predicted O3 responses, along with corresponding
errors under (a) moderate control and (b) strict control scenarios of the NWShD (monthly averaged daily 1 h maxima O3 in 2017, unit: mg/
m3).
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over the transition areas due to directly fitting the
polynomial function to predict the SR of each grid cell
for avoiding the use of E#prec,T .

3.2.3 Comparison of the EKMA diagrams

The EKMA diagrams were used to further evaluate the
performance of the two ERSM systems for an O3-NOx-
VOC sensitivity analysis. Figure 6 depicted the EKMA
diagrams derived from (a) Epf-RSM for the central area of

PRD (cPRD, i.e., the PRD without OTH), (b) pf-ERSM for
the cPRD, (c) Epf-RSM for the central area of NWShD
(cNWShD, i.e., the NWShD without OTH), and (d) pf-
ERSM for the cNWShD. Figure 6 showed similar
nonlinear responses for low to moderate emission cuts
(approximately less than 60%) in the Epf-RSM-based and
the pf-ERSM-based EKMA diagrams. However,
obviously distorted isopleths were observed in the pf-
ERSM-based EKMA diagrams for large emission cuts,
especially when the emission cuts of NOx exceeded 60%.
These would affect the accuracy of pf-ERSM in quantify-

Fig. 6 Comparison of the EKMA diagrams as derived from the (a) Epf-RSM for the cPRD, (b) pf-ERSM for the cPRD, (c) Epf-RSM for
the cNWShD, and (d) pf-ERSM for the cNWShD (monthly averaged daily 1 h maxima O3; unit: mg/m

3) (Note: the x- and y-axis represent
the ratios of current NOx and AVOC emissions to base emissions respectively; the blue lines are ridgelines).
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ing the effectiveness of large emission reductions. The
results illustrated that pf-ERSM could only aid in
developing precise O3 control strategies for short-term
O3 mitigation (low to moderate emission reductions) but
not for long-term attainment (large emission reductions).
Contrastingly, Epf-RSM introduced the HCAM and
optimized the ERSM calculation process, effectively
increasing the accuracy of quantifying the effectiveness
of both short-term and long-term O3 reduction measures.

3.3 Data support for ozone control strategy

The Epf-RSM-based EKMA diagrams were useful for O3-
NOx-VOC sensitivity analysis, which provided important
information for policymakers to understand the ambient O3

behavior. In an EKMA diagram, the NOx-sensitive and
VOC-sensitive regimes were separated by a ridgeline (blue
line) corresponding to the 1 h maxima O3 concentration for
a given EAVOC to produce (Ou et al., 2016). As shown in
Fig. 6(a), the baseline scenarios of the cPRD in January,
April, and October were above the ridgelines, indicating
that O3 formations were in VOC-sensitive regimes. The
baseline scenario of the cPRD in July was below the
ridgeline, showing that O3 formation was in a NOx-
sensitive regime. For the cNWShD (Fig. 6(c)), the
ridgelines were invisible or close to the NOx zero-out
line in January, April, and October, showing a strong
VOC-sensitive condition, while the baseline scenario in
July was NOx-sensitive.
The domain-averaged PR value (defined in Text S5) of

each region could be used for better understanding the
nonlinearity between O3 and its precursor emissions
(Table 2). If PR< 1 (i.e., baseline), the baseline scenario
was in a VOC-sensitive regime, otherwise, the baseline
scenario was in a NOx-sensitive regime (Xing et al., 2011;

Xing et al., 2018). The domain-averaged PRs of the cPRD
were 0.41, 0.83, 1.37, and 0.73, and those of the cNWShD
were< 0.00, 0.16, 1.46, and 0.27 in January, April, July,
and October, respectively; which showed the seasonal
variation of O3-NOx-VOC sensitivity consistent with that
seen in the EKMA diagdrams. Moreover, Table 2 showed
that the domain-averaged PRs of Guangzhou were lower
than those of other regions in the cPRD in four months; this
was mainly attributed to the massive traffic and industrial
emissions of NOx in the Guangzhou (Yang et al., 2019).
For the NWShD, the lower domain-averaged PR was
observed in Zibo in July (Table 2); this might be because of
the high NOx emission from traffic and industrial emissions
and coal-fired power plants in Zibo (Yao et al., 2019).
These results were similar to the O3 sensitivity analysis
results for the same regions in the observation-based study
that identified the O3 sensitivity of China using an
observable response indicator (Observable Peak Ratio)
(Xing et al., 2019).
For preventing an increase in O3 levels from the

emission controls, the minimum ratio of AVOC to NOx

reduction (VNr, defined in Text S5) was calculated with
Epf-RSM to help design an O3 control strategy. The
domain-averaged VNr values of the cPRD were estimated
to be 1.27, 0.36, -0.81, and 0.37 in January, April, July,
and October, respectively. The VNr in July was less than 0
due to the cPRD within the NOx-sensitive regime,
suggesting that O3 concentration could be reduced by
just controlling NOx. Compared to the cPRD, the
cNWShD was within stronger VOC-sensitive conditions
in January, April, and October, which required more
simultaneous AVOC control with NOx. The domain-
averaged VNr values of the cNWShD were estimated to
be 4.17, 5.47, and 2.25 in January, April, and October,
respectively. In July, the domain-averaged VNr value was

Table 2 The domain-averaged PR of each region

Region Jan. Apr. Jul. Oct.

PRD Shunde 0.35 0.83 >1.50 0.69

Foshan (excluding Shunde) 0.37 0.86 >1.50 0.72

Guangzhou 0.31 0.74 1.22 0.56

Zhongshan 0.40 0.81 >1.50 0.74

Jiangmen 0.41 0.86 >1.50 0.73

Dongguan & Shenzhen 0.49 0.74 1.37 0.87

cPRD 0.41 0.83 1.37 0.73

NWShD Jinan < 0.00 0.19 1.65 0.28

Dezhou < 0.00 0.16 >2.00 0.27

Binzhou < 0.00 0.19 >2.00 0.32

Liaocheng < 0.00 0.15 1.75 0.23

Taian < 0.00 0.19 1.81 0.25

Zibo < 0.00 0.17 1.23 0.23

cNWShD < 0.00 0.16 1.46 0.27
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estimated to be -1.66. For both regions, the simultaneous
AVOC reduction could help to avoid the increase of O3

along with NOx controls under VOC-sensitive conditions
in January, April, and October, while controlling NOx only
could reduce O3 concentration under NOx-sensitive
condition in July.

4 Conclusions

The application of pf-ERSM for supporting an O3 control
strategy was hindered by the relatively poor performance
in the margin and the transition areas. To break through this
limitation, an Epf-RSM was developed. Epf-RSM innova-
tively integrated the HCAM into the optimized ERSM
system to resolve the problem of relatively large errors in
the margin and the transition areas, moreover, the
calculation efficiency was further improved due to the
algorithm dimension reduction and the optimization of the
redundant computation process.
The prediction performance of Epf-RSM and pf-ERSM

on O3 concentrations in the two case study domains was
compared. The results showed that Epf-RSM could
reproduce the CMAQ simulations better than pf-ERSM
with MeanNE and 95th MaxNE decreased from 2.8 and
10.2% to 0.6 and 2.3%, respectively. The spatial distribu-
tion maps and the EKMA diagrams demonstrated that Epf-
RSM could effectively reduce the errors in the margin and
the transition areas.
The O3-NOx-VOC sensitivity results analyzed by Epf-

RSM indicated that the O3 productions in both cPRD and
cNWShD regions were limited by AVOC in January, April,
and October, while they were NOx-sensitive in July. The
O3 sensitivities of both regions varied for different seasons.
Therefore, the seasonality of the chemical mechanism used
to design an O3 control strategy was considered. The
minimum AVOC-to-NOx reduction ratios were recom-
mended to be 1.27, 0.36, and 0.37 for avoiding increasing
O3 concentrations in January, April, and October for the
cPRD, respectively. Stronger VOC-sensitive regimes
prevailed in cNWShD during the three months when
compared to the cPRD. This required more simultaneous
AVOC control with NOx (i.e., at least 4.17, 5.47, and 2.25
times, respectively). However, more strict control of NOx

was recommended to lower the ambient O3 for both
regions in July.
The uncertainty of WRF-CMAQ simulation results will

inevitably influence the results of the sensitivity analysis
for O3 because the Epf-RSM system is established based
on the WRF-CMAQ simulation results. Hence, it is
important to continually develop the emission inventory
and improve the model performance of WRF-CMAQ for
our future research in this domain.
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